Haltdos User Guide
  • Introduction
  • Customer Portal
  • hdPlatform
    • Stacks
      • Stack Status
      • Events
      • Alarms
      • Analytics
      • Instance
        • Operational Settings
        • High Availiability
        • VRRP
        • Network Settings
          • Ethernet
          • Virtual LAN
          • Link Bonds
        • Routing
          • BGP
          • OSFP
          • RIP
        • Integration
          • SNMP
          • NTP
        • DHCP Settings
        • Virtual Machines
      • Integrations
        • Syslog
        • API Tokens
        • Webhooks
        • Threat Feeds
      • Resource Content
        • Cache Pools
        • Encryption Key
        • SSL Certificates
          • Lets Encrypt Certificates
        • Web pages
        • Client Certificates
        • Revocation List
        • Custom Scripts
      • Stack Settings
        • Backup Policy
        • AAA Policy
        • Reports
        • Scheduler
        • Dashboards
        • Config Synchronization
    • Status Page
    • Updates
    • E-Mail Integration (SMTP)
    • OS Templates
    • Virtualization
    • User Management
      • Access Control
      • Active Directory
      • Password Policy
      • Admin Users
    • User Profile
      • Change Password
      • Reset Password
    • Logs & Diagnostics
  • Deployment
    • Link Load Balancers (LLB)
      • Scenario 1
      • Scenario 2
      • Scenario 3
      • Scenario 4
    • Application Delivery Controller
      • Scenario 1
      • Scenario 2
      • Scenario 3
  • Solutions
    • Web Application Firewall (WAF)
      • Machine Learning
      • Listener
        • Settings
        • Profiles
          • Settings
          • Geo Filtering
          • Antivirus
          • Bot Protection
          • Policy
            • Web Policy
            • JSON Policy
            • XML Policy
          • Rules
            • Error Rules
            • Form Rules
            • Firewall Rules
            • Rate Limit Rules
            • Whitelist Rules
            • Response Rules
            • Behavior Rules
            • Tamper Rules
            • Correlation Rules
            • Deception Rules
            • Script Rules
            • Log Rules
          • Signatures
        • SSL Settings
        • Performance
          • Caching
          • Compression
          • RUM Metric
        • Server Groups
          • Servers
          • Load Balancing
        • Monitors
        • Rules
          • Error Rules
          • Header Rules
          • Redirection Rules
          • Variable Rules
          • Upstream Rules
        • Variables
        • Advanced Bot
        • Rule Staging
        • Virtual Patching
        • Learning
        • Auto-Profiling
      • User Groups
      • Incidents
      • Tools
        • Global Whitelist
        • FP Finder
        • Match Finder
    • Web Security Scanner
      • Scan Profiles
    • Anti-DDoS
      • Profile
        • General Settings
        • Detection
        • Connections
          • TCP Settings
          • TCP Shield
          • Aggressive Aging
        • Application
          • HTTP
          • DNS
          • Miscellaneous
        • Traffic shaping
        • Network Rules
        • Signature
      • Geo Inspection
      • Bot Protection
      • SSL Offloading
      • Cloud Signaling
      • Incidents
      • Advance Settings
        • Pattern Score
        • Top talkers
      • Cluster
    • Link Load Balancer (LLB)
      • LLB Settings
      • Interface Groups
      • Monitors
        • Monitor Scripts
      • Rules
        • Load Balancing
        • Source NAT
        • Destination NAT
        • Fixed Routing
        • Scenario 5
        • Policy Routing
        • Traffic Shaper / QoS
    • Application Delivery Controller (ADC/SLB)
      • Listeners
        • Listener Settings
        • SSL Settings
        • Geo Filtering
        • Server Groups
          • Servers
          • Load Balancing
          • SNMP
        • Monitors
        • Performance
        • Rules
          • Error Rules
          • Header Rules
          • Redirection Rule
          • Policy Rules
          • Upstream Rule
          • Rate Limit Rules
        • Action Scripts
      • Incidents
    • SSL VPN
      • Settings
        • General Settings
        • Networking
        • Security
      • VPN Users
      • VPN Group
    • Global Server Load Balancer (GSLB)
      • Listener
        • Operational
        • Geo Filtering
        • Zones
        • Monitors
        • Rules
      • Domain Filters
      • Sites
  • Knowledgebase
    • Platform
      • KB: 00003001
      • KB: 00003002
      • KB: 00003003
      • KB: 00003004
      • KB: 00003005
      • KB: 00003006
      • KB: 00003007
      • KB: 00003008
      • KB: 00003009
      • KB: 00003010
      • KB: 00003011
    • Web Application Firewall (WAF)
      • KB: 00001001
      • KB: 00001002
      • KB: 00001003
      • KB: 00001004
      • KB: 00001005
      • KB: 00001006
      • KB: 00001007
      • KB: 00001008
      • KB: 00001009
      • KB: 00001010
      • KB: 00001011
      • KB: 00001012
      • KB: 00001013
      • KB: 00001014
      • KB: 00001015
      • KB: 00001016
      • KB: 00001017
      • KB: 00001018
      • KB: 00001019
      • KB: 00001020
      • KB: 00001021
      • KB: 00001022
      • KB: 00001023
      • KB: 00001024
      • KB: 00001025
      • KB: 00001026
      • KB: 00001027
      • KB: 00001028
      • KB: 00001029
      • KB: 00001030
      • KB: 00001031
      • KB: 00001032
      • KB: 00001033
      • KB: 10001034
      • KB: 00001035
      • KB: 00001036
      • KB: 00001037
      • KB: 00001038
      • KB: 00001039
      • KB: 00001040
      • KB: 00001041
      • KB: 00001042
      • KB: 00001043
      • KB: 00001044
      • KB: 00001045
      • KB: 00001046
      • KB: 00001047
      • KB: 00001048
      • KB: 00001049
      • KB: 00001050
      • KB: 00001051
      • KB: 00001052
      • KB: 00001053
      • KB: 00001054
      • KB: 00001055
      • KB: 00001056
      • KB: 00001057
      • KB: 00001058
      • KB: 00001059
      • KB: 00001060
      • KB: 00001061
      • KB: 00001062
      • KB: 00001063
      • KB: 00001064
      • KB: 00001065
    • Application Delivery Controller
      • KB: 00002000
      • KB: 00002001
      • KB: 00002002
      • KB: 00002003
      • KB: 00002004
      • KB: 00002005
      • KB: 00002006
      • KB: 00002007
      • KB: 00002008
      • KB: 00002009
      • KB: 00002010
      • KB: 00002011
      • KB: 00002012
      • KB: 00002013
      • KB: 00002014
      • KB: 00002015
      • KB: 00002016
      • KB: 00002017
      • KB: 00002018
      • KB: 00002019
      • KB: 00002020
      • KB: 00002021
      • KB: 00002022
    • Global Server Load Balancing
      • KB: 00004001
      • KB: 00004002
      • KB: 00004003
      • KB: 00004004
      • KB: 00004005
      • KB: 00004006
      • KB: 00004007
      • KB: 00004008
      • KB: 00004009
  • Troubeshooting
    • Case: 00009001
    • Case: 00009002
    • Case: 00009003
    • Case: 00009004
    • Case: 00009005
    • Case: 00009006
    • Case: 00009007
  • Glossary
Powered by GitBook
On this page

Was this helpful?

  1. Solutions
  2. Web Application Firewall (WAF)

Machine Learning

Reason behind using AI based Machine Learning in WAF.

PreviousWeb Application Firewall (WAF)NextListener

Last updated 3 years ago

Was this helpful?

Haltdos WAF uses machine learning for detecting and diminishing application layer attacks on web applications with the help of built-in rules (signatures) and user defined rules.

Anomaly based Learning

Haltdos provides user a robust solution with the help of machine-learning because the main task of a web application firewall is to protect downstream web applications against technical attacks. It can also be used for log analysis, or to support administrators in creating or optimizing complex WAF configurations.

AL is limited because it depends on what it learns from usage patterns that it has encountered. Web application firewalls that leverage machine learning ML, however, take a different approach. With ML, the WAF can minimize false positives by using a statistical model to determine the probability that an anomaly is actually evidence of a cyber attack or if it’s just an error or a change in how users interact with the application.

WAFs can utilize ML in an additional way – training ML models to recognize specific threats based on data collected from actual attacks or from security solutions. For example, leverages machine learning to detect advanced bots, providing a total picture of bot activity on web applications. To learn about whether a request is legitimate or a potential malicious attack attempt, it performs the following tasks:

  • Captures and collects inputs, such as URL parameters, to build a mathematical model of allowed access.

  • Observes the HTTP method of the traffic.

  • Matches anomalies against pre-trained threat models.

  • Detects attacks.

Haltdos WAF is used machine learning to enumerate all HTTP request, parameter, headers and cookies. This calculation is done during initial learning phase of standard behaviour by detecting deviation. Initially, solution is set on LEARNING mode means working on sample request and baseline evaluation of users and web appliaction. The baseline is figuring every request URL + Method combination and includes all parameters (in header and in body) along with headers and associated cookies. Once the learning is complete, the solution will verify every request against the model to determine whether it's an anomaly or not.

The magnificent advantage of Haltdos WAF is that solution does not depend on only one algorithm to evaluate genial anomaly or 0-day attack. Every request is evaluated against different ML models which check for different categories of attacks such as SQL Injection, Cross-site Scripting, etc. The suspicion score is the measure of deviation from baseline. Greater the deviation, higher the score and likely that the incoming request is a malicious request.

To configure Learning for your application, go to module.

Learning